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Statistics of persistent events: An exactly soluble model

A. Baldassarri, J. P. Bouchaud, I. Dornic, and C. Godre`che
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~Received 9 November 1998!

It was recently realized that the persistence exponent appearing in the dynamics of nonequilibrium systems
is a special member of a continuously varying family of exponents, describing generalized persistence prop-
erties. We propose and solve a simple stochastic spin model, where time intervals between spin flips are
independent, and distributed according to a Le´vy law. Both the limit distribution of the mean magnetization
and the generalized persistence exponents are obtained exactly. We discuss the relevance of this model for
phase ordering, spin glasses, and random walks.@S1063-651X~99!51301-9#

PACS number~s!: 02.50.Ey, 05.40.2a, 05.50.1q, 05.70.Ln
s

f
,
n
ia
m
h
e
u
e

fir
m
e
l

t a
th

in
a
ak

u
ion

he

in

e

ili

r

an
it

bi

l
oses
xpo-

Do

e

ch-
es

a
de-
n
e

r.
es-

es a
els,
be
as
r-

ere
and

era-
ver
in

all
sed

d,

la-
all

le
The question of persistence for coarsening systems i
determine the fraction of spaceR(t), which remained in the
same phase up to timet @1,2#. Equivalently, in the Ising
model at zero temperature,R(t) is defined as the fraction o
spins that did not flip up to timet @3#. In the scaling regime
R(t) decays ast2u, which defines the persistence expone
u. The surprise caused by the discovery of new nontriv
exponents in the dynamics of simple nonequilibrium syste
motivated a long series of works, mainly devoted to t
search of simple models or experimental situations, wh
the persistence exponents could be computed or meas
@4–9#. The existence of persistence exponents is now w
established, and their nature is recognized as that of
passage exponents, probing the past history of the syste

More recently, two new aspects of persistence have b
introduced@10#. Both involve the consideration of the loca
mean magnetizationMt5t21*0

t dt8 s(t8) of the spin at a
given site for the Ising model, or of the sign of the field a
given point in space for the simple diffusion equation, bo
evolved from a random initial condition~see also@11#!. This
quantity is simply related to the fraction of time that the sp
spent in the positive direction. Surprisingly, it turns out th
the distribution ofMt over the entire system does not pe
around zero fort→`, but tends to a nontrivial limit distri-
bution on@21,1#, singular at both ends as (17x)u21. The
existence of a limit distribution is based on analytical arg
ments and numerical measurements for the one-dimens
~1D! Ising model at zero temperature@10#, or for the diffu-
sion equation@10,11#, and can also be demonstrated in t
independent interval approximation for the latter@10#. It was
realized very recently that the same holds for the 2D Is
model at finite temperature, the limit distribution ofMt being
now singular at6m0(T), the Onsager spontaneous magn
tization, providing therefore astationarydefinition of persis-
tence at finite temperature@12#.

The second new aspect is concerned with the probab
of persistent large deviationsabove the levelx, where21
<x<1, defined as the probability thatMt remained greate
thanx, for all times t8<t @10#. For the Glauber-Ising chain
at zero temperature, or for the diffusion equation, this qu
tity was observed to decay algebraically at large times, w
an exponentu(x) continuously varying withx @10#. When
x51, this probability is thus the usual persistence proba
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ity, andu(1)5u. The existence of families of new nontrivia
persistence exponents requires an explanation and p
some fundamental questions. For instance, are these e
nents independent of the usual persistence exponent?
they depend on temperature@12#? Unfortunately, computing
the exact value ofu turns out to be a hard problem, so on
does not expect the computation ofu(x), or even of the
distribution of the mean magnetization, to be easily rea
able. The origin of the difficulty is that spins at different sit
are strongly correlated.

The aim of this Rapid Communication is to present
simple stochastic process that allows an exact analytical
termination of both the limit distribution of the local mea
magnetizationMt , and of the probability of persistent larg
deviations@hence of the family of exponentsu(x)], the latter
turning out surprisingly to be simply related to the forme
One fundamental aspect of this work is therefore that it
tablishes the existence of the family of exponentsu(x). As
we shall see, despite its simplicity, this process possess
number of the essential features of actual coarsening mod
in particular their nonstationary properties; hence, it can
seen as a very simplified model of coarsening. Finally,
will be discussed below, it brings out new views on diso
dered systems and random walks.

This model describes the dynamics of a single spin, wh
the time intervals between spin flips are independent
distributed according to a Le´vy law. Such a model is actually
rather natural. Consider a coarsening system at zero temp
ture, the Ising model for definiteness. Because of the e
growing size of domains, a spin at a given site can remain
the same direction for a very long time before a domain w
crosses this particular point and flips the spin in the rever
direction. By definition of the persistence exponentu, the
time t before a spin is flipped is very broadly distribute
with a power-law tail decaying ast212u for large t. The
simplest approximation is therefore to neglect the corre
tions between the different time intervals between flips,
assumed to be distributed with the same densityp(t), de-
caying ast212u @13#. For simplicity, the distribution of time
intervals p(t) is chosen hereafter to be a positive stab
Lévy distribution of index 0,u,1 denoted byLu

b(t). ~The
caseu.1 will be discussed below.! Its Laplace transform
readsL̂u

b(s)5exp(2bsu), whereb is the scale factor of the
R20 ©1999 The American Physical Society
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distribution, i.e., the typical values oft are of orderb1/u @14#.
As is well known, Lu

b(t) decays asymptotically ast212u

@14#.
We have investigated the statistics of the process, b

after n sign changes, or at time t, with very similar results in
the asymptotic regime. Aftern sign changes, the time
elapsed and the magnetization of the spin read

tn5tn211tn , Sn[tnMn5Sn211~2 !n21tn , ~1!

while, at timet, they are given by

t5tNt
1l, St[tM t5SNt

1~2 !Ntl. ~2!

In the first case,n is given andtn is a random variable, while
in the second one,t is given andNt is the random variable
equal to the largestn for which tn<t. Finally l is the length
of time measured backwards fromt to the last event. The
corresponding distributions are defined as

P~n,x!5P~Mn5Sn /tn>x!, ~3!

P~ t,x!5P~Mt5St /t>x!. ~4!

For distributions which are peaked around their means
large times, these quantities are referred to as the proba
ties of large deviations and are exponentially decreasing w
n or t, respectively. In the present case, wherep(t)
5Lu

b(t) is a positive Le´vy distribution, we find the limit
distribution

P~x!5 lim
n→`

P~n,x!5 lim
t→`

P~ t,x!, ~5!

5
1

pu Fp2 2arctanS rv2u1cospu

sinpu D G , ~6!

wherev5(12x)/(11x) and r 51 ~see below!.
Let us sketch the proof of Eq.~6! for P(n,x), leaving the

calculation ofP(t,x) to a longer publication@15#. We intro-
duceTn

1 andTn
2 , which are the lengths of time spent by th

spin, respectively in the positive or negative direction, su
that tn5Tn

11Tn
2 and Sn5Tn

12Tn
2 , with Tn

15t11t31¯

1t2k11 , if n52k11, and Tn
15t11t31¯1t2k21 , if n

52k, and Tn
25t21t41¯1t2k , in both cases. Then

P(Sn /tn>x)5P(Tn
2/Tn

1<v) with v5(12x)/(11x).
SinceTn

1 andTn
2 are sums of stable Le´vy random variables

Lu
b , they are themselves stable Le´vy random variablesLu

b6
,

where, using the addition rule of the scale parameters,b2

5kb, and b15kb ~if n52k), or b15(k11)b ~if n52k
11). The determination ofP(n,x) therefore amounts to
computing the distribution of the ratio of two Le´vy laws with
parametersb2 andb1. Denoting byH the Heaviside func-
tion, and using its Laplace representation along
Bromwich contour, one finds
th

at
ili-
th

h

e

P~Tn
2/Tn

1.v!5E
0

`

dt1dt2Lu
b1

~t1!Lu
b2

~t2!HS t2

t1
2v D

5E ds

2ips
exp@2b1~sv!u#

3exp@2b2~2s!u#.

This integral leads to Eq.~6! with r 5b2/b1. In the limit
n→`, r→1. This derivation also shows that whenevern is
even,P(n,x)5P(x).

The limit densityf (x)52P8(x) of the mean magnetiza
tion reads

f ~x!5
sinpu

2p

21v1v21

2 cospu1vu1v2u . ~7!

It is even, and diverges whenx→61 as (17x)u21. For u
,uc50.5946 . . . , where uc is the solution of uc
5cos(puc/2), x50 corresponds to a minimum off (x),
while for largeru, it corresponds to a local maximum. Th
can be interpreted as a precursory sign of the fact thatf (x)
tends tod(x) for u.1. @It also shows thatf (x) cannot be
approximated by ab-distribution whenu is too large. In this
respect, compare it to the discussion in@11#.#

We now consider the probability of persistent large dev
tions, defined as the probability that the mean magnetiza
M was, for all previous times, greater than some levelx.
More precisely one defines the quantitiesR(n,x)5P(Mn8
>x,;n8<n) and similarlyR(t,x)5P(Mt8>x,;t8<t). Nu-
merical computations show that both quantities decay a
braically in the asymptotic regime~see Fig. 1!, respectively
as

R~n,x!;n2f~x! ~n@1!, R~ t,x!;t2u~x! ~ t@1!,

where the two families of exponents are related byu(x)
5uf(x) ~see Fig. 2!. This relation is indeed expected sinc
for a givenn, tn scales asn1/u. Note that by definition of the
model,u(1)5u.

FIG. 1. Plot ofR(t,x) ~left! andR(n,x) ~right! for u51/2 and
various values ofx, in log-log coordinates. The power-law behavi
of both quantities for large times is clearly seen.
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We also observe with very good accuracy~see Fig. 2! the
relation

f~x!512P~x!5E
21

x

du f~u!, ~8!

which we now establish exactly. For this, we note th
R(n,x) is the joint probability thatSn8>xtn8 for all 1<n8
<n. Since clearlyR(2k,x)5R(2k11,x), we assume thatn
is even, and write

R~n52k,x!5P~j1>0,j11j2>0,...,j11j21¯1jk>0!,
~9!

where j i5(12x)t2i 212(11x)t2i . Since thet i are posi-
tive Lévy variables of indexu, thej i are also Le´vy variables
of index u, with an asymmetry parameterb5(vu21)/(vu

11), which measures the relative weight of the negative
positive tails@14#. The solution to Eq.~9! for general stable
Lévy variables is known@20,16#.

It reads

R~n52k,x!5
G~k112q!

G~k11!G~12q!
, ~10!

where 12q is the probability thatj is positive. This prob-
ability is precisely the quantityP(n52,x) introduced above,
itself equal toP(x). Henceq512P(x). Finally, the largek
behavior of the right-hand side~rhs! of Eq. ~10! is }k2q,
i.e., f(x)5q, which completes the proof of Eq.~8!. We
checked that the plot of Eq.~10! was indistinguishable from
that obtained numerically forR(n,x). Equations~6!, ~8!, and
~10! are the main results of this work.

In the rest of this paper we discuss the relevance of th
results to phase ordering, random walks and, unexpecte
to some aspects of the statistical mechanics of spin glas

First, the stochastic process presented above, where
intervals between spin flips are independent and distribu
according to a Le´vy distribution, exhibits nontrivial tempora
properties, both from mathematical@16,14#, and physical

FIG. 2. Plot of the exponentsf(x) and u(x)/u for u
50.3,0.5,0.7, showing that the relationu(x)5uf(x) holds. The
lines correspond to the exact resultf(x)512P(x).
t
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@17,18# points of view. For example, althoughp(t) is fixed
in time, the probability distribution of the length of timel̃
from some time origin~or waiting time! tw to the next flip is
nonstationary foru,1, i.e., it depends both ontw and l̃,
while it is asymptotically independent oftw for u.1. As a
consequence, the probability that a given spin did not
between timestw and tw1t is a function of t/tw if u,1,
while it is independent oftw if u.1 @17#. Thus foru,1, this
model captures theaging @19# nature of the persistence phe
nomenon. This property is deeply related to the fact that
largestt i in the sumtn5( i 51

n t i contributes to a finite frac-
tion of tn for u,1 even in the limitn→`, while this frac-
tion is asymptotically zero foru>1 @18#. Correspondingly,
this also ensures that the distribution of the mean magn
zation does not peak aroundx50, as was shown above.

Despite its simplicity, the model discussed here th
shares many features of more complex coarsening proce
As shown above, it leads to nontrivial predictions for t
quantitiesP(x) andu(x). Also, the behavior ofR(t,x) ob-
served in Fig. 1 strongly resembles that found in@10# for the
Glauber-Ising chain or the diffusion equation. These pred
tions can be seen as approximations for these more gen
models. In Fig. 3, we compare, for the Glauber model at z
temperature, the functionf(x)5u(x)/u(1), asdetermined
numerically in@10#, with 12P(x), the distribution of mag-
netization measured in@10#. Although there is qualitative
agreement between these curves, Eq.~8! is clearly only ap-
proximate. A better approximation, following from conside
ations on ‘‘exchangeable’’ variables, suggests that 12P(x)
is actually equal tou(x)/@u(x)1u(2x)# @15#. As can be
seen in Fig. 3, this is well obeyed by the numerical resu
However, the same approximation leads to much poorer
sults for the persistence exponentsu(x) of the diffusion
equation.

The model presented here is actually, in some respe
similar to the random energy model~REM! for spin-glasses
@18#. For example, the rhs of Eq.~10! is identical to the
expression for the participation ratioYk11 in the REM, with

FIG. 3. Comparison between the functionf(x) for the Glauber-
Ising chain, 12P(x), andu(x)/@u(x)1u(2x)# ~see text!.
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a reduced temperature equal toq @18,15#. An interesting
question would be to generalize this model to include so
correlations between the time intervalst i .

We also studied the caseu.1, wherep(t) has a finite
first moment. In this case, it is easy to check thattn grows
linearly with n, while Sn grows asn1/u for 1,u,2 and as
An for u.2 @14#. Hence, the quantityMn tends to zero for
large n, and f (x) collapses to ad function. However, the
persistence exponentsu(x) remain well defined, and ar
found to be equal tou(x.0)5u, u(x50)51/2, andu(x
,0)50. This shows that the relation betweenu(x) and
P(x) actually still holds in this degenerate case, except
x50 where the value ofP(x) is ill defined. However, the
nature of the persistence phenomenon in this model is q
different when u.1, where it becomes stationary~see
above!. It would be interesting to see if this is also true
more general models whereu.1, such as the diffusion equa
ys

ev
.

s
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r
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tion in high dimensions@5,10,11#.
When u51/2, p(t)5L1/2

b (t) is precisely the distribution
of the time intervals between two returns to the origin of t
binomial random walk with equal steps61, in the regime of
long times. The fraction of time spent by the walk on t
positive half axis isTt

1/t5y, the distribution of which is
well known, and given at large times by the arcsine dens
1/pAy(12y), which is precisely Eq.~7!, with u51/2, and
x5St /t52Tt

1/t21. In this respect, Eq.~7! can be consid-
ered as a generalization of the arcsine law to the case o
walk defined in this work. A striking consequence of th
present work is the existence for the simple random walk
the families of exponentsu(x) andf(x). This result brings
an answer to a question raised in@10#.

We wish to thank J. M. Luck, S. Redner, and C. Sire
interesting discussions.
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